2个回答
展开全部
√(x^2+y^2) = ae^[arctan(y/x)]
(1/2)ln(x^2+y^2) = lna + arctan(y/x)
(x + y.y')/(x^2+y^2) = [1/( 1+ (y/x)^2) ] .[ (xy'-y) /x^2]
= [x^2/( x^2+ y^2) ] .[ (xy'-y) /x^2]
=(xy-y')/(x^2+y^2)
x+y.y' = xy-y'
(1+y)y' = xy-x
y' = (xy-x)/(1+y)
(1/2)ln(x^2+y^2) = lna + arctan(y/x)
(x + y.y')/(x^2+y^2) = [1/( 1+ (y/x)^2) ] .[ (xy'-y) /x^2]
= [x^2/( x^2+ y^2) ] .[ (xy'-y) /x^2]
=(xy-y')/(x^2+y^2)
x+y.y' = xy-y'
(1+y)y' = xy-x
y' = (xy-x)/(1+y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询