高中数学圆与方程题目

第一问不用过程,第二问需要过程。... 第一问不用过程,第二问需要过程。 展开
 我来答
期望数学
2019-02-23 · 初中数学,高中数学,Word
期望数学
采纳数:867 获赞数:1702

向TA提问 私信TA
展开全部
圆关于某条直线对称,说明圆心在该直线上,得a,b的第一个关系,又根据另一直线与圆的相交弦长,得a,b的第二个关系,联立可求出a,b,从而得圆的方程
第二问,用设而不求法,设M(x1,y1),N(x2,y2),联立直线与圆的方程,整理利用韦达定理表示出x1x2,y1y2,再代入x1x2+y1y2=5,可求得k的值,特别说明,求得的k的值一定要满足Δ>0
善言而不辩
2019-02-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:2691万
展开全部

1、(x-2)²+(y-1)²=4

2、不可能:

→    →
OM·ON=R·R·cosθ=4cosθ≤4 不可能=5。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
奕童嘟
2019-02-23 · TA获得超过279个赞
知道小有建树答主
回答量:183
采纳率:70%
帮助的人:13.9万
展开全部
解答

(1)由题意知圆C的圆心(a,b)在直线y=x+1上,所以b=a+1,①

因为圆心C到直线x+y−4=0的距离为1−(2√2)2−−−−−−−−−−⎷=2√2,

所以|a+b−4|2√=2√2,化简得a+b−4=1或a+b−4=−1,②

联立①②,解得{a=2b=3或{a=1b=2(舍),

所以圆C的方程为(x−2)2+(y−3)2=1.…(4分)

(2)假设存在直线l,使得OM−→−⋅ON−→−=6(O为坐标原点),

设M(x1,y1),N(x2,y2),

将y=kx+2代入方程(x−2)2+(y−3)2=1,得(x−2)2+(kx−1)2=1,

即(1+k2)x2−(2k+4)x+4=0,③

由△=(2k+4)2−16(1+k2)>0得,

−4(3k2−4k)>0,解得0<k<43,

且x1+x2=2k+41+k2,x1⋅x2=41+k2.…(7分)

因为OM−→−⋅ON−→−=x1x2+y1y2=x1x2+(kx1+2)(kx2+2)

=(1+k2)x1x2+2k(x1+x2)+4,

所以(1+k2)×41+k2+2k×2k+41+k2+4=6,

即3k2+4k+1=0,解得k=−1或k=−13,…(10分)

此时③式中△<0,没有实根,与直线l与C交于M、N两点相矛盾,

所以不存在直线l,使得OM−→−⋅ON−→−=6.…(12分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
有1说2
2019-02-23 · TA获得超过284个赞
知道小有建树答主
回答量:542
采纳率:69%
帮助的人:208万
展开全部


凑合看吧

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友c41e30f
2019-02-23 · TA获得超过205个赞
知道答主
回答量:1300
采纳率:6%
帮助的人:98.9万
展开全部
不会做,须请教老师指导
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式