1个回答
展开全部
C=∫(0->1) f(x) dx
f(x) = 1/(1+x^2) + x^3.∫(0->1) f(x) dx
f(x) = 1/(1+x^2) + Cx^3
∫(0->1) f(x) dx
= ∫(0->1) [1/(1+x^2) + Cx^3] dx
= [ arctanx +(1/4)Cx^4]|(0->1)
= π/4 + (1/4)C
C =π/4 + (1/4)C
(3/4)C =π/4
C = π/3
ie
∫(0->1) f(x) dx = π/3
f(x) = 1/(1+x^2) + x^3.∫(0->1) f(x) dx
f(x) = 1/(1+x^2) + Cx^3
∫(0->1) f(x) dx
= ∫(0->1) [1/(1+x^2) + Cx^3] dx
= [ arctanx +(1/4)Cx^4]|(0->1)
= π/4 + (1/4)C
C =π/4 + (1/4)C
(3/4)C =π/4
C = π/3
ie
∫(0->1) f(x) dx = π/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询