讨论函数f(x)=ax/x^2-1,(-1<x<1,a不等于0)的单调性。(解题过程要完整)

 我来答
戏君昊卑西
2019-07-11 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:33%
帮助的人:823万
展开全部
1.a>0
设任意x1,x2∈(-1,1),且-1<x1<x2<1
x1-x2<0;
-1<x1x2<1,
x1x2-1<0;
x1^2<1,x2^2<1,
x1^2-1<0,x2^2-1<0;
f(x1)-f(x2)=ax1/(x1^2)-ax2/(x2^2-1)
=a(x2-x1)(x1x2-1)/[(x1^2-1)(x2^2-1)<0
单调减。
2.a<0时,同理可证单调增。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式