一道积分题:∫1/(1+x^2)^2 dx

 我来答
羊舌骊燕花娥
2019-09-12 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:28%
帮助的人:826万
展开全部
记In=∫1/(1+x^2)^n
dx
那么In=
∫1/(1+x^2)^n
dx=x/(1+x^2)^n-∫xd(1/(1+x^2)^n)
=x/(1+x^2)^n+2n∫x^2/(1+x^2)^(n+1)dx
=x/(1+x^2)^n+2n∫1/(1+x^2)^ndx-2n∫1/(1+x^2)^(n+1)dx
=x/(1+x^2)^n+2n*In-2nIn+1
最终有
In+1=(2n-1)/2n*In+1/2n*x/(1+x^2)^n
显然I1=arctan(x)+c
那么I2=1/2*(x/(1+x^2)+arctan(x))+c
其余可以利用递推公式依次计算。
茹翊神谕者

2020-10-03 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1653万
展开全部

可以用公式法

也可以用变量代换法

详情如图所示,

有任何疑惑欢迎追问

变量代换法

公式法

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式