求y对x的
二阶导数仍然可以看作是
参数方程确定的函数的求导方法,因变量由y换作dy/dx,
自变量还是x,所以
y对x的二阶导数
=
dy/dx对t的导数
÷
x对t的导数
dy/dt=1/(1+t^2)
dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2)
所以,dy/dx=1/(1+t^2-2t)
d(dy/dx)/dt=[1/(1+t^2-2t)]'=-(2t-2)/(1+t^2-2t))^2
所以,
d2y/dx2=d(dy/dx)/dt
÷
dx/dt
=-(2t-2)/(1+t^2-2t))^2
÷
(1+t^2-2t)/(1+t^2)
=(2-2t)(1+t^2)/(1+t^2-2t)^3