1/(2+cosx)的不定积分是什么
1个回答
展开全部
我来做一次吧,楼上那方法还真弄麻烦了
令u
=
tan(x/2),cosx
=
(1
-
u²)/(1
+
u²),dx
=
2du/(1
+
u²)
∫
1/(2
+
cosx)
*
dx
=
∫
1/[2
+
(1
-
u²)/(1
+
u²)]
*
2du/(1
+
u²)
=
∫
(1
+
u²)/(2
+
2u²
+
1
-
u²)
*
2du/(1
+
u²)
=
2∫
du/(u²
+
3),用公式:∫
dx/(x²
+
a²)
=
(1/a)arctan(x/a)
+
C,可得
=
(2/√3)arctan(u/√3)
+
C
=
(2/√3)arctan[(1/√3)tan(x/2)]
+
C,快很多吧
另解:
∫
dx/(2
+
cosx)
=
∫
dx/[2sin²(x/2)
+
2cos²(x/2)
+
cos²(x/2)
-
sin²(x/2)],公式cos2x
=
cos²x
-
sin²x
=
∫
dx/[3cos²(x/2)
+
sin²(x/2)],分子和分母再除以cos²(x/2)
=
2∫
sec²(x/2)/[3
+
tan²(x/2)]
d(x/2)
=
2∫
d[tan(x/2)]/[3
+
tan²(x/2)],凑sec²(x/2)
d(x/2)
=
d[tan(x/2)]
=
2
*
1/√3
*
arctan[tan(x/2)/√3]
+
C,公式:∫
dx/(x²
+
a²)
=
(1/a)arctan(x/a)
+
C
=
(2/√3)arctan[(1/√3)tan(x/2)]
+
C
令u
=
tan(x/2),cosx
=
(1
-
u²)/(1
+
u²),dx
=
2du/(1
+
u²)
∫
1/(2
+
cosx)
*
dx
=
∫
1/[2
+
(1
-
u²)/(1
+
u²)]
*
2du/(1
+
u²)
=
∫
(1
+
u²)/(2
+
2u²
+
1
-
u²)
*
2du/(1
+
u²)
=
2∫
du/(u²
+
3),用公式:∫
dx/(x²
+
a²)
=
(1/a)arctan(x/a)
+
C,可得
=
(2/√3)arctan(u/√3)
+
C
=
(2/√3)arctan[(1/√3)tan(x/2)]
+
C,快很多吧
另解:
∫
dx/(2
+
cosx)
=
∫
dx/[2sin²(x/2)
+
2cos²(x/2)
+
cos²(x/2)
-
sin²(x/2)],公式cos2x
=
cos²x
-
sin²x
=
∫
dx/[3cos²(x/2)
+
sin²(x/2)],分子和分母再除以cos²(x/2)
=
2∫
sec²(x/2)/[3
+
tan²(x/2)]
d(x/2)
=
2∫
d[tan(x/2)]/[3
+
tan²(x/2)],凑sec²(x/2)
d(x/2)
=
d[tan(x/2)]
=
2
*
1/√3
*
arctan[tan(x/2)/√3]
+
C,公式:∫
dx/(x²
+
a²)
=
(1/a)arctan(x/a)
+
C
=
(2/√3)arctan[(1/√3)tan(x/2)]
+
C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询