高数中的e,是什么意思
自然常数。
e是一个实数。她是一种特殊的实数,我们称之为超越数。据说最早是从计算 (1+1/x)^x 当x趋向于无限大时的极限引入的。当然e也有很多其他的计算方式,例如 e=1+1/1!+1/2!+1/3!+…。
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。它就像圆周率(π)和虚数单位i,e是数学中最重要的常数之一。
扩展资料:
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
以e为底的指数函数的重要方面在于它的函数与其导数相等。e是无理数和超越数(见林德曼—魏尔施特拉斯定理(Lindemann-Weierstrass))。这是第一个获证的超越数,而非故意构造的(比较刘维尔数);由夏尔·埃尔米特(Charles Hermite)于1873年证明。
其实,超越数主要只有自然常数(e)和圆周率(π)。自然常数的知名度比圆周率低很多,原因是圆周率更容易在实际生活中遇到,而自然常数在日常生活中不常用。
参考资料:百度百科-自然常数
e是自然对数的底数,是一个无限不循环小数。e在科学技术中用得非常多,一般不使用以10为底数的对数。学习了高等数学后就会知道,许多结果和它有紧密的联系,以e为底数,许多式子都是最简的,用它是最“自然”的,所以叫“自然对数”,因而在涉及对数运算的计算中一般使用它,是一个数学符号,没有很具体的意义。
其值是2.71828……,是这样定义的:
当n->∞时,(1+1/n)^n的极限。
注:x^y表示x的y次方。
也可以用级数定义
e=1+1/1!+1/2!+1/3!+……+1/n!+……
e≈1+1/1!+1/2!+1/3!+……+1/n!,n取得越大,近似程度越好