求一道极限题 lim(sinn!×n^2/3)/(n+1)
1个回答
展开全部
解法一:(定义法)
∵对任意的ε>0,存在N=[1/ε³]([1/ε³]表示不超过1/ε³的最大整数),当n>N时,
有|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)<n^(2/3)/n=n^(-1/3)<ε
∴根据极限定义,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0;
解法二:(两边夹法)
∵|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)
∴-n^(2/3)/(n+1)≤n^(2/3)sinn!/(n+1)≤n^(2/3)/(n+1)
∵lim(n->∞)[n^(2/3)/(n+1)]=lim(n->∞)[(1/n^(1/3))/(1+1/n)]=0
同理lim(n->∞)[-n^(2/3)/(n+1)]=0
∴根据两边夹定理,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0.
∵对任意的ε>0,存在N=[1/ε³]([1/ε³]表示不超过1/ε³的最大整数),当n>N时,
有|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)<n^(2/3)/n=n^(-1/3)<ε
∴根据极限定义,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0;
解法二:(两边夹法)
∵|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)
∴-n^(2/3)/(n+1)≤n^(2/3)sinn!/(n+1)≤n^(2/3)/(n+1)
∵lim(n->∞)[n^(2/3)/(n+1)]=lim(n->∞)[(1/n^(1/3))/(1+1/n)]=0
同理lim(n->∞)[-n^(2/3)/(n+1)]=0
∴根据两边夹定理,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询