3个回答
展开全部
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
定义
设y是u的函数,u是x的函数,如果的值全部或部分在的定义域内,则y通过u成为x的函数,记作,称为由函数与复合而成的复合函数。[1]
如等都是复合函数。
而就不是复合函数,因为任何x都不能使y有意义。由此可见,不是任何两个函数放在一起都能构成一个复合函数。
复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。[2]
定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
定义
设y是u的函数,u是x的函数,如果的值全部或部分在的定义域内,则y通过u成为x的函数,记作,称为由函数与复合而成的复合函数。[1]
如等都是复合函数。
而就不是复合函数,因为任何x都不能使y有意义。由此可见,不是任何两个函数放在一起都能构成一个复合函数。
复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。[2]
定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
2020-11-09 · 知道合伙人教育行家
关注
展开全部
3.
(1)
y=√arccosx
y'
=(1/2)(arccosx)^(-1/2) . (arccosx)'
=(1/2)(arccosx)^(-1/2) . [-1/√(1-x^2) ]
=-1/[2.√arccosx.√(1-x^2)]
(2)
y=[cos(2-4x)]^2
y'
=2cos(2-4x).[cos(2-4x)]'
=2cos(2-4x).[-sin(2-4x)].(2-4x)'
=2cos(2-4x).[-sin(2-4x)].(-4)
=8cos(2-4x).sin(2-4x)
(3)
y=ln(lnx)
y'
=(1/lnx)(lnx)'
=(1/lnx)(1/x)
=1/[xlnx]
(4)
y=(x+2lgx)^3
y'
=3(x+2lgx)^2. (x+2lgx)'
=3(x+2lgx)^2. [1+2/(ln10x)]
(1)
y=√arccosx
y'
=(1/2)(arccosx)^(-1/2) . (arccosx)'
=(1/2)(arccosx)^(-1/2) . [-1/√(1-x^2) ]
=-1/[2.√arccosx.√(1-x^2)]
(2)
y=[cos(2-4x)]^2
y'
=2cos(2-4x).[cos(2-4x)]'
=2cos(2-4x).[-sin(2-4x)].(2-4x)'
=2cos(2-4x).[-sin(2-4x)].(-4)
=8cos(2-4x).sin(2-4x)
(3)
y=ln(lnx)
y'
=(1/lnx)(lnx)'
=(1/lnx)(1/x)
=1/[xlnx]
(4)
y=(x+2lgx)^3
y'
=3(x+2lgx)^2. (x+2lgx)'
=3(x+2lgx)^2. [1+2/(ln10x)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询