已知单调区间求参数

 我来答
依清懿Lb
2020-10-20 · TA获得超过766个赞
知道小有建树答主
回答量:2291
采纳率:100%
帮助的人:84.4万
展开全部
函数的单调性:也可以叫做函数的增减性。当函数f(x)的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。

注意几点:

①单调性意思是函数在其定义域内递增或递减,如函数f(x)=x2在整个定义域内不是单调函数,但在(-∞,0)或(0,+∞)具有单调性。

②有的函数不具有单调性:如f(x)=x+1(x∈Z),因为定义域不是区间,不具备单调性。

③f(x)在定义域的两个区间A=(a,b)和B=(c,d),(b<c)都是增函数或减函数,不能用A∪B表示函数的单调区间,应该用A和B 表示。

说明:这是因为有些函数在(a,b)的最大值大于在(c,d)上的最小值。例如f(x)= 1/x 在(-∞,0)和(0,+∞)上都是减函数,由于f(-1)=-1<f(1)=1,这样在连续区间内不是递减的。
如图①函数在区间内单调递增,如图②函数在区间(-∞,2)上单调递增,在区间[2,+∞)上也单调递增,但是在整个区间内并不是单调递增的,所以此函数的单调区间只能用(-∞,2)和[2,+∞)表示。

④最值:连续函数在(-∞,b)递减,在(b,+∞)上递增,则f(b)为函数最小值;在(-∞,b)递增,在(b,+∞)上递减,f(b)为最大值。
看情况求导,存在单调区间 可以求极值点,极大或者极小 然后分类讨论 实处于极值点的哪边,构造含参数的不等式 利用单调性和极值点的关系解出参数的范围即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式