急,这题不定积分怎么求
2个回答
展开全部
运用分部积分法
∫arctan(1–x)dx
=x·arctan(1–x)–∫xd[arctan(1–x)]
=x·arctan(1–x)+∫x/(x²–2x+2) dx
=x·arctan(1–x)+∫(x–1)/(x²–2x+2) dx+∫1/[1²+(x–1)²]dx
=x·arctan(1–x)+ln∨(x²–2x+2)+arctan(x–1)+C
=(x–1)·arctan(1–x)+ln∨(x²–2x+2)+C
∫arctan(1–x)dx
=x·arctan(1–x)–∫xd[arctan(1–x)]
=x·arctan(1–x)+∫x/(x²–2x+2) dx
=x·arctan(1–x)+∫(x–1)/(x²–2x+2) dx+∫1/[1²+(x–1)²]dx
=x·arctan(1–x)+ln∨(x²–2x+2)+arctan(x–1)+C
=(x–1)·arctan(1–x)+ln∨(x²–2x+2)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询