求方程2x^3-3x+1=0的根的个数
1个回答
展开全部
2x^3-3x+1=0
2x³-2x-x+1=0
2x(x²-1)-(x-1)=0
(x-1)[2x(x-1)-1]=0
(x-1)(2x²-2x-1)=0
2(x-1)(x²-x-1/2)=0
2(x-1)[(x-1/2)²-3/4]=0
2(x-1)[x-(1+√3)/2][x-(1-√3)/2]=0
x=1或x=(1+√3)/2或x=1-√3)/2
即:方程2x^3-3x+1=0的根有3个
2x³-2x-x+1=0
2x(x²-1)-(x-1)=0
(x-1)[2x(x-1)-1]=0
(x-1)(2x²-2x-1)=0
2(x-1)(x²-x-1/2)=0
2(x-1)[(x-1/2)²-3/4]=0
2(x-1)[x-(1+√3)/2][x-(1-√3)/2]=0
x=1或x=(1+√3)/2或x=1-√3)/2
即:方程2x^3-3x+1=0的根有3个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询