a大于0,b大于0,ab大于等于a+b+1,求a+b最小值

 我来答
缑向镜浩初
2020-06-20 · TA获得超过1148个赞
知道小有建树答主
回答量:1757
采纳率:100%
帮助的人:8.4万
展开全部
ab大于等于a+b+1
即ab≥a+b+1
即a+b+1≤ab≤【(a+b)/2】²
即a+b+1≤【(a+b)/2】²
令t=a+b,则t>0
则t+1≤【t/2】²=1/4*t²
即t²-4t-4≥0
解得t≥(2+2倍根2)或t≤(2-2倍根2)(舍去)
就t≥(2+2倍根2)
即(a+b)≥(2+2倍根2)
即a+b最小值2+2倍根2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式