已知f(x)是定义在R上的函数,对任意x∈R都有f(x+4)=f(x)+2f(2...
已知f(x)是定义在R上的函数,对任意x∈R都有f(x+4)=f(x)+2f(2),若函数f(x-1)的图象关于直线x=1对称,且f(1)=2,则f(2011)等于()A...
已知f(x)是定义在R上的函数,对任意x∈R都有f(x+4)=f(x)+2f(2),若函数f(x-1)的图象关于直线x=1对称,且f(1)=2,则f(2011)等于( ) A.2 B.3 C.4 D.6
展开
展开全部
先由函数f(x-1)的图象关于直线x=1对称,得函数f(x)的图象关于直线x=0对称,即函数f(x)是偶函数,故有f(-x)=f(x).再把-2代入f(x+4)=f(x)+2f(2),可得函数周期为4;就把f(2011)转化为f(3)=f(-1)=f(1)即可求解.
【解析】
因为函数f(x-1)的图象关于直线x=1对称,
所以函数f(x)的图象关于直线x=0对称,即函数f(x)是偶函数,故有f(-x)=f(x).
∵对任意x∈R,都有f(x+4)=f(x)+2f(2),
∴f(-2+4)=f(-2)+2f(2)⇒f(-2)+f(2)=0⇒2f(2)=0⇒f(2)=0
∴f(x+4)=f(x)+2f(2)=f(x).即函数周期为4.
∴f(2011)=f(4×502+3)=f(3)=f(-1)=f(1)=2.
故选A.
【解析】
因为函数f(x-1)的图象关于直线x=1对称,
所以函数f(x)的图象关于直线x=0对称,即函数f(x)是偶函数,故有f(-x)=f(x).
∵对任意x∈R,都有f(x+4)=f(x)+2f(2),
∴f(-2+4)=f(-2)+2f(2)⇒f(-2)+f(2)=0⇒2f(2)=0⇒f(2)=0
∴f(x+4)=f(x)+2f(2)=f(x).即函数周期为4.
∴f(2011)=f(4×502+3)=f(3)=f(-1)=f(1)=2.
故选A.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询