本题是复合函数的求导综合应用,主要过程和思路如下:
y=(1/3)ln(x+1)/√(x^2-x+1)+√3/3arctan(+2x-1)/√3
=(1/3)ln(x+1)-(1/6)ln(x^2-x+1)+√3/3arctan(2x-1)/√3
所以:
y'=1/3(x+1)-(2x-1)/6(x^2-x+1)+√3/3*2/√3/[1+(2x-1)^2/3]
=1/3(x+1)-(2x-1)/6(x^2-x+1)+1/2(x^2-x+1)
=1/3(x+1)+(2-x)/3(x^2-x+1)
=1/(x+1)/(x^2-x+1),
本题同时用到对数、反正切函数的求导公式,详细计算步骤如下图所示。
![](https://iknow-pic.cdn.bcebos.com/caef76094b36acaff0e12b836cd98d1001e99c48?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto)