CNN中卷积层、池化层和全连接层分别有什么作用和区别?

 我来答
五百学长
高能答主

2021-11-12 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:3972
采纳率:100%
帮助的人:67.6万
展开全部

如下:


卷积层:提取特征。“不全连接,参数共享”的特点大大降低了网络参数,保证了网络的稀疏性,防止过拟合。之所以可以“参数共享”,是因为样本存在局部相关的特性。

池化层:有MaxPool和AveragePool等。其中MaxPool应用广泛。因为经过MaxPool可以减小卷积核的尺寸,同时又可以保留相应特征,所以主要用来降维。

全连接层:在全连接的过程中丢失位置信息,可以理解为降低了学习过程中的参数敏感度;很多分类问题需要通过softmax层进行输出;进行非线性变换等等。但是现在已经有很多网络结构去掉了最后的全连接层。我也是入坑没多久,对这一点理解仍很粗浅。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式