人工智能是学习什么?
10个回答
展开全部
1、学习并掌握一些数学知识
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础。
线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础。
概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。
再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路。
以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。
2、掌握经典机器学习理论和算法
如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:
1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);
2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);
3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);
4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);
5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);
6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;
7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);
8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;
9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);
10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);
11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(ProjectionPursuit)等;
12) 集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。
3、掌握一种编程工具,比如Python
一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。
4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。
5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。
6、选择自己感兴趣或者工作相关的一个领域深入下去
人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的钻研下去,这样才能成为人工智能领域的大牛,有所成就。
根据百度百科给的定义,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的还能的理论、方法、技术及应用系统的一门新的技术科学。
百度百科关于人工智能的定义详解中说道:人工智能是计算机的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
综上,从定义上讲,人工智能是一项技术。
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础。
线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础。
概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。
再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路。
以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。
2、掌握经典机器学习理论和算法
如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:
1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);
2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);
3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);
4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);
5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);
6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;
7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);
8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;
9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);
10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);
11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(ProjectionPursuit)等;
12) 集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。
3、掌握一种编程工具,比如Python
一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。
4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。
5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。
6、选择自己感兴趣或者工作相关的一个领域深入下去
人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的钻研下去,这样才能成为人工智能领域的大牛,有所成就。
根据百度百科给的定义,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的还能的理论、方法、技术及应用系统的一门新的技术科学。
百度百科关于人工智能的定义详解中说道:人工智能是计算机的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
综上,从定义上讲,人工智能是一项技术。
杭州一知智能科技有限公司
2023-07-25 广告
2023-07-25 广告
一般来说,人工智能培训在半年以内。 人工智能培训是按阶段来进行的,一般分为6个阶段 第一阶段 python的核心编程 是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编...
点击进入详情页
本回答由杭州一知智能科技有限公司提供
展开全部
学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-08-31 · 学动漫、设计、电竞、电商、短视频、软件等
关注
展开全部
有一定的事实证明,Python语言更适合初学者,Python语言并不会让初学者感到晦涩,它突破了传统程序语言入门困难的语法屏障,初学者在学习Python的同时,还能够锻炼自己的逻辑思维,同时Python也是入门人工智能的首选语言。
学习编程并非那么容易,有的人可能看完了Python语法觉得特别简单,但再往后看就懵了,因为到后期发现并不能学以致用,理论结合项目才是学好一门编程语言的关键。可以选择报班入门,一般在2W左右,根据自己的实际需要实地了解,可以先在试听之后,再选择适合自己的。
学习编程并非那么容易,有的人可能看完了Python语法觉得特别简单,但再往后看就懵了,因为到后期发现并不能学以致用,理论结合项目才是学好一门编程语言的关键。可以选择报班入门,一般在2W左右,根据自己的实际需要实地了解,可以先在试听之后,再选择适合自己的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-04-21 · 电脑培训、IT教育、职业技能培训。
石家庄新华电脑学院
石家庄新华电脑学校隶属于新华教育集团,是经河北省人力资源和社会保障厅批准成立的一所大型互联网教育学校,是河北省专业的互联网人才培养基地,位于石家庄市南二环西路199号,交通便利,学风醇厚
向TA提问
关注
展开全部
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-08-31 · 百度知道合伙人官方认证企业
关注
展开全部
人工智能领域方面的专家对人工智能做了不同的定义,但目前人工智能的概还没有统一版,他们定义有一些共同权点可以归纳为:
依赖的硬件为计算机(注:这个计算机不单单指我们日常用的笔记本电脑)自身有特定的算法可以通过经验学习提高自己的不足
依赖的硬件为计算机(注:这个计算机不单单指我们日常用的笔记本电脑)自身有特定的算法可以通过经验学习提高自己的不足
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询