用极限定义证明数列极限?
2个回答
展开全部
证明:(1)对于任意的ε>0,解不等式
│0.99..9-1│=│(1-1/10^n)-1│=│-1/10^n│=1/10^n<ε
得n>lg(1/ε),取N≥[lg(1/ε)]。
于是,对于任意的ε>0,总存在自然数NN≥[lg(1/ε)]。当n>N时,有│0.99..9-1│<ε。
即lim(n->∞)(0.99....9n个9)=1;
(2)对于任意的ε>0,解不等式
│arctann-π/2│=│arctan(-1/n)│=│-arctan(1/n)│=arctan(1/n)<ε
得n>cotε,取N≥[cotε]。
于是,对于任意的ε>0,总存在自然数N≥[cotε]。当n>N时,有│arctann-π/2│<ε。
即lim(n->∞)(arctann)=π/2。
│0.99..9-1│=│(1-1/10^n)-1│=│-1/10^n│=1/10^n<ε
得n>lg(1/ε),取N≥[lg(1/ε)]。
于是,对于任意的ε>0,总存在自然数NN≥[lg(1/ε)]。当n>N时,有│0.99..9-1│<ε。
即lim(n->∞)(0.99....9n个9)=1;
(2)对于任意的ε>0,解不等式
│arctann-π/2│=│arctan(-1/n)│=│-arctan(1/n)│=arctan(1/n)<ε
得n>cotε,取N≥[cotε]。
于是,对于任意的ε>0,总存在自然数N≥[cotε]。当n>N时,有│arctann-π/2│<ε。
即lim(n->∞)(arctann)=π/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询