奇偶性的判断方法是什么?
展开全部
1、利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数。
2、用求和(差)法判断:若f(x)-f(-x)=2f(x),则f(x)为奇函数。若f(x)+f(-x)=2f(x),则f(x)为偶函数。
扩展资料
如果对于函数定义域D内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
奇、偶性是函数的整体性质,对整个定义域而言。奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
参考资料来源:百度百科-奇偶性
参考资料来源:百度百科-函数奇偶性
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询