底数不同指数相同如何相乘?
底数不同,指数相同的整式乘法算法:a^n×b^n=(a×b)^n
这种运算称为幂运算。
例如:
1、2^3×3^3=(2×3)^3=216
2、2^2×3^2=(2×3)^2=36
3、2^4×3^4=(2×3)^4=1296
除此之外还有底数相同指数不同的乘法运算:n^a×n^b=n^(a+b)
例如:
1、2^3×2^4=2^(3+4)=128
扩展资料:
1、指数,是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
2、刘徽为《九章算术》作注,在《方田》章求矩形面积法则中写道:“此积谓田幂,凡广从相乘谓之幂(长和宽相乘的积叫作幂)。”这是第一次在数学文献上出现幂。
底数不同,指数相同的整式乘法算法:a^n×b^n=(a×b)^n
这种运算称为幂运算。
例如:
1、2^3×3^3=(2×3)^3=216
2、2^2×3^2=(2×3)^2=36
3、2^4×3^4=(2×3)^4=1296
扩展资料
当幂的指数为负数时,称为“负指数幂”。正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。
如:
2的6次方=2^6=2×2×2×2×2×2=4×2×2×2×2=8×2×2×2=16×2×2=32×2=64
3的4次方=3^4=3×3×3×3=9×3×3=27×3=81
如上面的式子所示,2的6次方,就是6个2相乘,3的4次方,就是4个3相乘。
如果是比较大的数相乘,还可以结算计算器、计算机等计算工具来进行计算。