可微是可导的什么条件?

 我来答
帐号已注销
高能答主

2021-12-27 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:867
采纳率:100%
帮助的人:18.7万
展开全部

可导是可微的必要条件,可微是可导的充分条件可微一定可导。但是可导不一定可微。若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

如果一个函数在x0处可导,那么它一定在x0处是连续函数

函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在,则称f(x)在x0处可导。

(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式