点到直线的距离是什么?

 我来答
热爱社会的飞飞
高能答主

2021-12-30 · 衣食以厚民生,礼义以养其心。
热爱社会的飞飞
采纳数:530 获赞数:51604

向TA提问 私信TA
展开全部

点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。

点到线的距离公式的证明过程:

根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。

设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A。

则l'的解析式为y-y₀=(B/A)(x-x₀)。

把l和l'联立得l与l'的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))。

由两点间距离公式得

PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2

+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2

=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2

+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2

=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2

+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2

=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(Ax₀+By₀+C)^2/(A^2+B^2)

所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。



垂线是一条直线,可以向两段无限延伸,没有长度。垂线段是垂线上的一条特殊的线段,是有限的一段,有长度。

垂线:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。垂线段:线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离。

如何画垂足

画垂足就需要画出来两条相交的直线,需要用到直尺和直角三角尺。先过一个点任意画一条直线,把直尺的一条边和已经画好的那条直线重合放好,然后把直角三角尺的其中一个直角边靠在直尺上,保持三角尺的另一个边和直尺垂直的情况。

慢慢移动直角三角尺,直到直尺三角尺的顶点和刚刚过某个点画直线的那个点重合,最后沿着直角三角尺的另一条边过直线外的那一点画出来直线,这条直线就是那条已知直线的垂线。在两条直线相交的地方点出来相交的点,用任意字母表示出来,然后画上一横一竖组成正方形的小框框,就表示这个角是直角,这两条直线相互垂直,所以点出来的这个点就是垂足。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式