sinx的平方的积分是什么?
1个回答
展开全部
sin平方x的积分=1/2x-1/4sin2x+C(C为常数)。
解:∫(sinx)^2dx
=(1/2)∫(1-cos2x)dx
=(1/2)x-(1/4)sin2x+C(C为常数)
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫u'vdx=∫(uv)'dx-∫uv'dx
即:∫u'vdx=uv-∫uv'd,这就是分部积分公式。
也可简写为:∫vdu=uv-∫udv。
基本公式
1、∫0dx=c
2、∫x^udx=(x^u+1)/(u+1)+c
3、∫1/xdx=ln|x|+c
4、∫a^xdx=(a^x)/lna+c
5、∫e^xdx=e^x+c
6、∫sinxdx=-cosx+c
7、∫cosxdx=sinx+c
8、∫1/(cosx)^2dx=tanx+c
9、∫1/(sinx)^2dx=-cotx+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询