复合函数极限

 我来答
绪游归867
2020-11-07 · TA获得超过231个赞
知道答主
回答量:251
采纳率:98%
帮助的人:52万
展开全部

对内层函数求得x0处的极限u0,再求外层函数在u0处的极限。

极限代表的是一种趋向性,函数f(x)在x=x0处的极限与f(x)在x=x0处的函数值无关(假设f(x)在x=x0处有定义),所以函数极限定义用的是x0的去心邻域,因为当x=x0时,|f(x)-A|=|f(x0)-A|0)f(x)=0。

扩展资料:

注意事项:

复合函数的单调性判断:依y=f(u),u=φ(x)的单调性来决定。即增+增=增,减+减=增,增+减=减,减+增=减,可以简化为同增异减。

函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。

参考资料来源:百度百科-函数极限

参考资料来源:百度百科-复合函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式