定积分∫(上限1,下限-1)x/√(5-4x)dx
展开全部
∫x/√(5-4x)dx (-1→1)
=-(1/4)∫(5-4x-5)/√(5-4x)dx (-1→1)
=-(1/4)∫[√(5-4x) - 5/√(5-4x)]dx (-1→1)
=(1/16)∫[√(5-4x) - 5/√(5-4x)]d(5-4x) (-1→1)
=(1/16)[(2/3)(5-4x)^(3/2) - 10√(5-4x)] (-1→1)
=(1/16)[(2/3)(1-27) - 10(1-3)]
=1/6
过程、答案绝对错不了.
=-(1/4)∫(5-4x-5)/√(5-4x)dx (-1→1)
=-(1/4)∫[√(5-4x) - 5/√(5-4x)]dx (-1→1)
=(1/16)∫[√(5-4x) - 5/√(5-4x)]d(5-4x) (-1→1)
=(1/16)[(2/3)(5-4x)^(3/2) - 10√(5-4x)] (-1→1)
=(1/16)[(2/3)(1-27) - 10(1-3)]
=1/6
过程、答案绝对错不了.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询