2个回答
展开全部
设AD与CE交于M点,
M为三角形ABC的垂心,
连结BM并延长交AC于F点,
则BF垂直AC,
三角形BMD与三角形BCF相似,有:
MD/CF=BM/BC(式1)。
三角形BMD与三角形ACD相似,有:
MD/DC=BD/AD(式2)。
同时,因角BAC=45度,则有角ABF=45度,
而三角形BME与三角形CMF相似,角MCF也为45度,则
2倍的CF平方=MC平方=MD平方+DC平方=MD平方+16,
BM平方=MD平方+BD平方=MD平方+36。
将(式1)两端均平方得
MD平方/CF平方=BM平方/BC平方(式3),
将CF平方与BM平方代入(式3),得
MD平方的平方-148MD平方+576=0
配方,移项,得
(MD平方-74)的平方=4900
MD平方=144或MD平方=4,解得MD=12或2
将MD=12代入(式2)得AD=2,明显不合理,舍去。
将MD=2代入(式2)得AD=12。
所以答案为AD=12
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
M为三角形ABC的垂心,
连结BM并延长交AC于F点,
则BF垂直AC,
三角形BMD与三角形BCF相似,有:
MD/CF=BM/BC(式1)。
三角形BMD与三角形ACD相似,有:
MD/DC=BD/AD(式2)。
同时,因角BAC=45度,则有角ABF=45度,
而三角形BME与三角形CMF相似,角MCF也为45度,则
2倍的CF平方=MC平方=MD平方+DC平方=MD平方+16,
BM平方=MD平方+BD平方=MD平方+36。
将(式1)两端均平方得
MD平方/CF平方=BM平方/BC平方(式3),
将CF平方与BM平方代入(式3),得
MD平方的平方-148MD平方+576=0
配方,移项,得
(MD平方-74)的平方=4900
MD平方=144或MD平方=4,解得MD=12或2
将MD=12代入(式2)得AD=2,明显不合理,舍去。
将MD=2代入(式2)得AD=12。
所以答案为AD=12
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询