函数对称性公式大总结是什么?

 我来答
社无小事
高能答主

2022-03-30 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20414

向TA提问 私信TA
展开全部

函数对称性公式大总结:

y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性,例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。

中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

对称变换

(1)函数y=f(x)的图象关于y轴对称的图像为y=f(-x)。

关于x轴对称的图像为y=-f(x);关于原点对称的图像为y=-f(-x)。

(2)函数y=f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y=2b-f(x);关于点(a,b)中心对称的图像为y=2b-f(2a-x)。

生活达人唐鲜生
2023-07-15 · TA获得超过123个赞
知道小有建树答主
回答量:1789
采纳率:93%
帮助的人:78.2万
展开全部
函数对称性的公式总结如下:

1. 奇函数的对称性:
- f(-x) = - f(x)
- 奇函数关于原点对称,即图像关于原点旋转180度后重合。

2. 偶函数的对称性:
- f(-x) = f(x)
- 偶函数关于y轴对称,即图像关于y轴翻折后重合。

3. 周期函数的对称性:
- f(x + T) = f(x),其中T为正周期
- 周期函数具有平移对称性,在每个周期内的图像是相似的。

4. 中心对称函数的对称性:
- f(-x) = f(x),且f(0) = 0
- 中心对称函数关于原点对称,即图像关于原点旋转180度后重合,并且通过原点。

以上是常见对称性的公式总结。这些对称性公式可以用于判断和分析函数的对称性,从而更好地理解函数的性质和图像。当我们能够确定函数的对称性时,可以简化对函数的理解和计算。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2023-07-20
展开全部

函数对称性是指函数在某种操作下保持不变的特性。这些操作可以是关于某个点、轴或中心进行的反转、旋转或平移等。

以下是一些常见的函数对称性及其对应的公式大总结:

  • 偶函数对称性:
    定义:如果对于任意x,有f(-x) = f(x)。
    公式:f(x)是偶函数 ⇔ f(-x) = f(x)

  • 奇函数对称性:
    定义:如果对于任意x,有f(-x) = -f(x)。
    公式:f(x)是奇函数 ⇔ f(-x) = -f(x)

  • x轴对称性(关于x轴对称):
    定义:如果对于任意x,有f(x) = f(-x)。
    公式:函数f(x)关于x轴对称 ⇔ f(x) = f(-x)

  • y轴对称性(关于y轴对称):
    定义:如果对于任意x,有f(-x) = -f(x)。
    公式:函数f(x)关于y轴对称 ⇔ f(-x) = -f(x)

  • 原点对称性(关于原点对称):
    定义:如果对于任意x,有f(-x) = -f(x)。
    公式:函数f(x)关于原点对称 ⇔ f(-x) = -f(x)

  • 旋转对称性:
    定义:函数在某个旋转角度下保持不变。
    公式:f(x ± a) = f(x),其中a是旋转角度。

  • 这些对称性特性可以帮助我们更好地理解函数的性质,并在分析函数图像和方程时提供重要的线索。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式