方程 X*(X+1)*(X+2*(X+3)=5040
展开全部
因为 X*(X+1)*(X+2)*(X+3)=5040
可得 (x^2+3x)(x^2+3x+2)=5040
(x^2+3x)^2+2(x^2+3x)-5040=0
(x^2+3x)^2+2(x^2+3x)+72*(-70)=0
即(x^2+3x+72)(x^2+3x-70)=0
由判别式可知x^2+3x+72>0
所以x^2+3x-70=0
即(x-7)(x+10)=0
可得x1=7 ,x2=-10
可得 (x^2+3x)(x^2+3x+2)=5040
(x^2+3x)^2+2(x^2+3x)-5040=0
(x^2+3x)^2+2(x^2+3x)+72*(-70)=0
即(x^2+3x+72)(x^2+3x-70)=0
由判别式可知x^2+3x+72>0
所以x^2+3x-70=0
即(x-7)(x+10)=0
可得x1=7 ,x2=-10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询