如图,点O在角APB的平分线上,圆o与PA相切于点c. (1)求证:直线PB与圆O相切;

 我来答
faker1718
2022-08-22 · TA获得超过986个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:52.2万
展开全部
(1)证明:连接OC,作OD⊥PB于D点.
∵⊙O与PA相切于点C,∴OC⊥PA.
∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,
∴OD=OC.
∴直线PB与⊙O相切;
设PO交⊙O于F,连接CF.
∵OC=3,PC=4,∴PO=5,PE=8.
∵⊙O与PA相切于点C,
∴∠PCF=∠E.
又∠CPF=∠EPC,
∴△PCF∽△PEC,
∴CF:CE=PC:PE=4:8=1:2.
∵EF是直径,∴∠ECF=90°.
设CF=x,则EC=2x.
∴x2+(2x)2=62,
解得x= 655.
则EC=2x= 1255.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式