代数式的定义与概念
展开全部
代数式定义与概念就是在实数范围内,用加、减、乘、除、乘方、开方、绝对值等运算符号把有限的数或表示数的字母联系起来的式子。
代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。
注意事项:
1、单独的一个数或者一个字母也是代数式;
2、代数式不能带有“=、≈、≠、≥、≤、<、>”等表示大小关系的符号。
代数式的书写格式如下:
1.两字母相乘、数字与字母相乘、字母与括号相乘以及括号与括号相乘时,乘号都可以省略不写.如:“x与y的积”可以写成“xy”;“a与2的积”应写成“2a”,“m、n的和的2倍”应写成“2(m+n)”。
2.字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面.例如“x×2”要写成”2x”,不能写成“x2”;“长、宽分别为a、b的长方形的周长”要写成“2(a+b)”,不能写成“(a+b)2”。
3.代数式中不能出现除号,相除关系要写成分数的形式。
4.数字与数字相乘时,乘号(也可以写作 · )仍应保留不能省略,或直接计算出结果.例如“3×7xy”不能写成“37xy”,最好写成“21xy”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询