当x→0时,函数e^(sinx)-e^x是几阶无穷小? 如题.

 我来答
华源网络
2022-09-12 · TA获得超过5602个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:149万
展开全部
e^(sinx)-e^x=e^x×[e^(sinx-x)-1].
x→0时,e^x→1,e^(sinx-x)-1等价于sinx-x.
使用泰勒公式,sinx-x=(x-x^3/3!+〇(x^3))-x=-1/6×x^3+〇(x^3)
所以,x→0时,e^(sinx)-e^x 与 x^3 同阶,所以x→0时,e^(sinx)-e^x 是 x 的3阶无穷小.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式