求函数y=log 1/2(3+2x-x^2)的单调区间和值域. 请写出解题步骤!

 我来答
舒适还明净的海鸥i
2022-07-30 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:67.3万
展开全部
3+2x-x^2>0
(x-3)(x+1)<0
-1<x<3
定义域:-1<x<3
y=log 1/2(x)是减函数.
所以y=3+2x-x^2的增区间是y=log 1/2(3+2x-x^2)的减区间,y=3+2x-x^2的减区间是y=log 1/2(3+2x-x^2)的增区间.即增区间(-1,1),减区间(1,3).
所以值域为(log 1/2(3+2*1-1^2),+∞)
即(-2,+∞)</x<3
</x<3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式