样本均值的期望和方差是什么?
展开全部
设总体x~u[a,b],样本均值的期望和方差如下:
如果随机变量只取得有限个值或无穷能按一定次序一一扰困列出,其值域为一个或若干个皮李轮有限或无限区间,这样的随机变量称为离散型随机变量。
离散型随机变量的一切可能的取值乘积之和称为该离散型随机变量的数学期望(若该求和绝对收敛),它是简单算术平均的一种推广,类似加权平均。
随机变量概念
在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果。
就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这燃信些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。
因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询