解方程公式法一元二次
解一元二次方程的公式法如下:
△=b^2-4ac≥0。 对于一元二次方程ax^2+bx+c=0(a>0),设△=b^2-4ac可得出以下结果: 1、△=b^2-4ac>0的时候有2个顶点(代表有两个根)。 2、△=b^2-4ac=0的时候有1个顶点(代表有一个根)。 3、△=b^2-4ac<0的时候有没有顶点(代表有零个根)。
通过分析古巴比伦泥板上的代数问题,可以发现在公元前2250年古巴比伦人就已经掌握了与求解一元二次方程相关的代数学知识,并将之应用于解决有关矩形面积和边的问题。 相关的算法可以追溯到乌尔第三王朝。
在发现于卡呼恩(Kahun)的两份古埃及纸草书上也出现了用试位法求解二次方程的问题。
公元前300年前后,活跃于古希腊文化中心亚历山大的数学家欧几里得(Euclid)所著的《几何原本》(Euclid’s Elements)中卷II命题5、命题6以及卷VI命题12、命题13的内容相当于二次方程的几何解。
继欧几里得之后,亚历山大数学发展第二次高潮“白银时代”的代表人物丢番图(Diophantus)发表了《算术》(Arithmetica)。
该书出现了若干二次方程或可归结为二次方程的问题。这足以说明丢番图熟练掌握了二次方程的求根公式,但仍限于正有理根。不过他始终只取一个根,如果有两个正根,他就取较大的一个。
中国古代数学很早就涉及二次方程问题。在中国传统数学最重要的著作《九章算术》中就已涉及相关问题。因此可以肯定,二次方程及其解法自东汉以来就已为人们所熟知了。
广告 您可能关注的内容 |