等腰三角形中垂线定理
等腰三角形中垂线定理:
1、定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
2、逆定理:和一条线段两个端点距离相等的点,在这条线段的直平分线上。
等腰三角形是指三角形中至少有二条边相等,二条相等的边是三角形的腰,另一个边是底边,二个腰的夹角是顶角,腰与底边的夹角是底角,二个底角相等。它的中垂线就是等腰三角形顶角的平分线平分底边并垂直于底边。它与底边的高相重合,也称为三线合一。
等腰三角形的性质:
1、等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4、等腰三角形底边上的垂直平分线到两条腰的距离相等。
5、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高。
7、一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8、等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9、等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。