欧拉公式复数
1个回答
展开全部
E^ (ix)= (cos x+isin x)
复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。
拓扑学中,在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。
把复指数函数与三角函数联系起来的一个公式,
,e是自然对数的底,i是虚数单位。它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它不仅出现在数学分析里,而且在复变函数论里也占有非常重要的地位,更被誉为“数学中的天桥”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询