若向量组a1,a2,a3,a4线性无关,判断a1+a2,a2+a3,a3+a4,a4+a1线性相关性并证明.

 我来答
户如乐9318
2022-08-06 · TA获得超过6679个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
设有k1,k2,k3,k4使k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0即(k1+k4)a1+(k1+k2)a2+(k2+k3)a3+(k3+k4)a4=0由题意a1,a2,a3,a4线性无关,则k1+k4=0k1+k2=0k2+k3=0k3+k4=0显然k1=k3=1,k2=k4=-1是其一组解,k1,k2,k3,k4...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式