若向量组a1,a2,a3,a4线性无关,判断a1+a2,a2+a3,a3+a4,a4+a1线性相关性并证明. 我来答 1个回答 #热议# 生活中有哪些实用的心理学知识? 户如乐9318 2022-08-06 · TA获得超过6679个赞 知道小有建树答主 回答量:2559 采纳率:100% 帮助的人:141万 我也去答题访问个人页 关注 展开全部 设有k1,k2,k3,k4使k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0即(k1+k4)a1+(k1+k2)a2+(k2+k3)a3+(k3+k4)a4=0由题意a1,a2,a3,a4线性无关,则k1+k4=0k1+k2=0k2+k3=0k3+k4=0显然k1=k3=1,k2=k4=-1是其一组解,k1,k2,k3,k4... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: