求数列1+3+6+10+15+21+28+36的和?
1个回答
展开全部
1+3+6+10+15+21+28+36
=1/2*1*2+1/2*2*3+1/2*3*4+...+1/2*8*9
=1/2[1*2+2*3+3*4+...+8*9]
=1/2[1/3*1*2*3+1/3*(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(8*9*10-7*8*9)]
=1/6(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+8*9*10-7*8*9)
=1/6*8*9*10
=120
公式:1*2+2*3+3*4+...+n(n+1)=1/3n(n+1)(n+2),2,37*4,2,通项是an=n*(n+1)/2=(n^2+n)/2
求和的时候分两部分求
sn=[(1^2+2^2+……n^2)+(1+2+……+n)]/2
=[n*(n+1)*(2n+1)/6 + n*(n+1)/2]/2
=(n^3+3n^2+2n)/6,2,求数列1+3+6+10+15+21+28+36的和
用什么公式
=1/2*1*2+1/2*2*3+1/2*3*4+...+1/2*8*9
=1/2[1*2+2*3+3*4+...+8*9]
=1/2[1/3*1*2*3+1/3*(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(8*9*10-7*8*9)]
=1/6(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+8*9*10-7*8*9)
=1/6*8*9*10
=120
公式:1*2+2*3+3*4+...+n(n+1)=1/3n(n+1)(n+2),2,37*4,2,通项是an=n*(n+1)/2=(n^2+n)/2
求和的时候分两部分求
sn=[(1^2+2^2+……n^2)+(1+2+……+n)]/2
=[n*(n+1)*(2n+1)/6 + n*(n+1)/2]/2
=(n^3+3n^2+2n)/6,2,求数列1+3+6+10+15+21+28+36的和
用什么公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询