已知tanα=3分之2,求sinαcosα分之1=?
展开全部
tanα=2/3
1/(sinαcosα)
=2/(2sinαcosα)
=2/sin(2α)
=2/(2tanα/(1+(tanα)^2))
=(1+(tanα)^2)/tanα
=(1+(2/3)^2)/(2/3)
=(13/9)/(2/3)
=13/6
1/(sinαcosα)
=2/(2sinαcosα)
=2/sin(2α)
=2/(2tanα/(1+(tanα)^2))
=(1+(tanα)^2)/tanα
=(1+(2/3)^2)/(2/3)
=(13/9)/(2/3)
=13/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |