已知数列{an}通项an=(2n-1)*3^n,求Sn
1个回答
展开全部
错位相减
Sn =1*3+3*3^2+5*3^3+.+(2n-3)*3^(n-1)+(2n-1)*3^n (1)
同乘以3
3Sn = 1*3^2+3*3^3+.+(2n-3)*3^n+(2n-1)*3^(n+1) (2)
(1)-(2)
-2Sn =3+2[3^2+3^3+.+3^n]-(2n-1)*3^(n+1)
-2Sn=3+2*[9-3^(n+1)]/(1-3)-(2n-1)*3^(n+1)
-2Sn=3+3^(n+1)-9-(2n-1)*3^(n+1)
Sn=3+(n-1)*3^(n+1)
Sn =1*3+3*3^2+5*3^3+.+(2n-3)*3^(n-1)+(2n-1)*3^n (1)
同乘以3
3Sn = 1*3^2+3*3^3+.+(2n-3)*3^n+(2n-1)*3^(n+1) (2)
(1)-(2)
-2Sn =3+2[3^2+3^3+.+3^n]-(2n-1)*3^(n+1)
-2Sn=3+2*[9-3^(n+1)]/(1-3)-(2n-1)*3^(n+1)
-2Sn=3+3^(n+1)-9-(2n-1)*3^(n+1)
Sn=3+(n-1)*3^(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询