[考研 线性代数]"特征值的和等于矩阵主对角线上元素之和"怎么证明??
展开全部
写出行列式|λE-A|
根据定义,行列式是不同行不同列的项的乘积之和
要得到λ^(n-1)只能取对角线上元素的乘积
(λ-a11)(λ-a22)...(λ-ann)
所以特征多项式的n-1次项系数是-(a11+a22+...+ann)
而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn)
所以a11+a22+...+ann=λ1+λ2+...+λn,8,这个就是矩阵迹的定义
设有N阶矩阵A,那么矩阵的迹(用tr(A)表示)就等于A的特征值的总和,也即A矩阵的主对角线元素的总和。
非要证的话就把特征多项式展开然后用韦达定理,这个考研是不要求的,0,[考研 线性代数]"特征值的和等于矩阵主对角线上元素之和"怎么证明?
如题.
具体见李永乐.李正元复习全书数学一2013年的第446页例题5.3上面的性质说明第三条.
根据定义,行列式是不同行不同列的项的乘积之和
要得到λ^(n-1)只能取对角线上元素的乘积
(λ-a11)(λ-a22)...(λ-ann)
所以特征多项式的n-1次项系数是-(a11+a22+...+ann)
而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn)
所以a11+a22+...+ann=λ1+λ2+...+λn,8,这个就是矩阵迹的定义
设有N阶矩阵A,那么矩阵的迹(用tr(A)表示)就等于A的特征值的总和,也即A矩阵的主对角线元素的总和。
非要证的话就把特征多项式展开然后用韦达定理,这个考研是不要求的,0,[考研 线性代数]"特征值的和等于矩阵主对角线上元素之和"怎么证明?
如题.
具体见李永乐.李正元复习全书数学一2013年的第446页例题5.3上面的性质说明第三条.
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询