已知随机变量的概率密度,怎样求分布函数?
1个回答
展开全部
已知概率密度f(x),那么求F(x)对f(x)进行积分即可,在x<a时,f(x)都等于0,显然积分F(x)=0
而在a<x<b时,f(x)=1/(b-a)
不定积分结果为x/(b-a),代入上下限x和a
于是在a到x上积分得到概率为(x-a)/(b-a)
那么x大于等于b时,概率就等于1,所以得到了上面的式子
扩展资料:
分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
1.定义
设X为连续型随机变量,其密度函数为 ,则有对上式两端求关于x的导数得这正是连续型随机变量X的分布函数与密度函数之间的关系。
2.几种常见的连续性随机变量的分布函数
参考资料:百度百科-分布函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询