这个积分怎么算∫(1-x^2)/(x(1+x^2))dx=?
1个回答
展开全部
∫(1-x^2)/[x(1+x^2)]dx
let
(1-x^2)/[x(1+x^2)] = a/x+ (b1x+b0)/(1+x^2)
1-x^2= a(1+x^2) +x(b1x+b0)
put x=0
a=1
coef.of x^2
-1=a+b1
b1=-2
coef.of x
b0=0
(1-x^2)/[x(1+x^2)] = 1/x- 2x/(1+x^2)
∫(1-x^2)/[x(1+x^2)]dx
=∫[1/x- 2x/(1+x^2)] dx
= ln|x| - ln(1+x^2) + C
let
(1-x^2)/[x(1+x^2)] = a/x+ (b1x+b0)/(1+x^2)
1-x^2= a(1+x^2) +x(b1x+b0)
put x=0
a=1
coef.of x^2
-1=a+b1
b1=-2
coef.of x
b0=0
(1-x^2)/[x(1+x^2)] = 1/x- 2x/(1+x^2)
∫(1-x^2)/[x(1+x^2)]dx
=∫[1/x- 2x/(1+x^2)] dx
= ln|x| - ln(1+x^2) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询