已知x+1/y=y+1/z=z+1/x,且x,y,z为互不相同的正数,求证:xyz=1 同上

 我来答
大沈他次苹0B
2022-08-23 · TA获得超过7316个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:176万
展开全部
因为x+1/y=y+1/z所以x-y=1/z-1/y即x-y=(y-z)/yz
同理y-z=(z-x)/xz,z-x=(x-y)/xy
所以x-y=(y-z)/yz=(z-x)/xyz^2=(x-y)/x^2y^2z^2
又x不等于y不等于z,即x-y不为0
所以x^2y^2z^2=1
又X、Y、Z是正数,所以:XYZ=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式