线性代数 相似矩阵 证明:如果A与B相似,则A‘与B’相似

 我来答
新科技17
2022-09-10 · TA获得超过5912个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.5万
展开全部
因为A与B相似, 所以存在可逆矩阵P, 满足 P^(-1) A P = B等式两边转置, 得 P' A' [P^(-1)]' = B'.因为 [P^(-1)]' = (P')^(-1)所以 P' A' (P')^(-1) = B'令Q = (P')^(-1), 则Q可逆, 且 Q^(-1) = P', 故有Q^(-1) A' Q...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式