对的,无理数的定义可以描述为:无理数是不能写成两个整数之比的实数,或者等价地说,无理数是开不尽的实数。其中,“开不尽”的含义即是指这些实数无法表示为有理数形式,并且在十进制表示下也无限不循环。
例如,根号2就是一个无理数,因为它无法表示为有理数的比例形式,且其小数部分是无限不循环的。当然,并非所有无理数都如此容易辨认,因为存在类似于 ∛3 + 2 ∛2 这样的复杂表达式,其是否属于无理数需要通过进一步计算和证明来确定。
总之,无理数与有理数(能写成整数之比的实数)是两个不同的数学概念,前者是后者的补充,用来填补有理数中“缺失”的一部分。