大数据挖掘是什么?

 我来答
北大青鸟志远科技
2023-04-03 · 用心创作内容,感谢您的关注。
北大青鸟志远科技
向TA提问
展开全部

  数据挖掘(DataMining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

  数据挖掘对象

  根据信息存储格式,北大青鸟南邵计算机学院认为用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。

  数据挖掘流程

  定义问题:清晰地定义出业务问题,确定数据挖掘的目的。

  数据准备:数据准备包括:选择数据_在大型数据库和数据仓库目标中提取数据挖掘的目标数据集;数据预处理_进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。

  数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。

  结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。

  数据挖掘分类

  直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。

  间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。

  数据挖掘的方法

  神经网络方法

  神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

  遗传算法

  遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

  决策树方法

  决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式