已知二次函数y=ax^2+bx+c的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D

(1)求二次函数的解析式(2)在直线x=m(m>2)上有一点E(E点在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式... (1)求二次函数的解析式
(2)在直线x=m(m>2)上有一点E(E点在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示)
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由。
展开
gshbao
推荐于2016-12-01 · TA获得超过1.4万个赞
知道大有可为答主
回答量:2378
采纳率:60%
帮助的人:3060万
展开全部

(1)∵二次函数y=ax²+bx+c的图象经过点A(1,0),B(2,0),C(0,-2)

∴a+b+c=0

4a+2b+c=0

c=-2

解得a=-1,b=3,c=-2

∴二次函数的解析式y=-x ²+3x-2

(2)当△EDB∽△AOC时,有AO/ED=CO/BD或AO/BD=CO/ED

∵AO=1,CO=2,BD=m-2

当AO/ED=CO/BD时,得1/ED=2/(m-2),∴ED=(m-2)/2

∵点E在第四象限,∴E1(m,(m-2)/2)

当AO/BD=CO/ED时,得1/(m-2)=2/ED,∴ED=2m-4

∵点E在第四象限,∴E2(m,4-2m)

(3)假设抛物线上存在一点F,使得四边形ABEF为平行四边形,则

EF=AB=1,点F的横坐标为m-1

当点E1的坐标为(m,(m-2)/2)时,点F1的坐标为(m-1,(2-m)/2)

∵点F1在抛物线的图象上,∴(2-m)/2=-(m-1)²+3(m-1)-2

∴2m ²-11m+14=0,解得m1=7/2,m2=2(不合题意,舍去)

∴F1(7/2,-3/4)

∴S□ABEF =1×3/4=3/4

当点E2的坐标为(m,4-2m)时,点F2的坐标为(m-1,4-2m)

∵点F2在抛物线的图象上,∴4-2m=-(m-1) ²+3(m-1)-2

∴m  ²-7m+10=0,解得m1=5,m2=2(不合题意,舍去)

∴F2(4,-6)

∴S□ABEF =1×6=6

tian_et
2010-05-02 · TA获得超过783个赞
知道小有建树答主
回答量:334
采纳率:0%
帮助的人:331万
展开全部

如图,和楼下相比,楼下清楚多了,而且你可以看到我手稿中有个错误,没有注意是第四像限,y轴坐标正负搞反了这是你要注意的地方

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式