线性代数问题?

 我来答
亦是如此
高粉答主

2023-06-25 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544460

向TA提问 私信TA
展开全部

内容如下:

1、方阵A不满秩等价于A有零特征值。

2、A的秩不小于A的非零特征值的个数。

线性变换秩是多少,就一定找到有多少个线性无关的特征向量。因为一个特征向量只能属于一个特征值,所以有多少个线性无关的特征向量,就有多少个特征值(不管特征值是不是一样)。这里有n个1,都是一样的(从特征多项式也知道有n个重根)。因为非退化的线性替换不改变空间的维数,不改变矩阵的秩。

其他性质

线性变换,转置。矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 

今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。

若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。注记矩阵可看成二阶张量, 因此张量可以认为是矩阵和向量的一种自然推广。

上海华然企业咨询
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式